National Cotton Council of America
Beltwide Cotton Conferences
January 8-11, 2008
Gaylord Opryland Resort and Convention Center
Nashville, Tennessee
The Cotton Foundation

Recorded Presentations

Friday, January 11, 2008 - 9:30 AM

Wireless GPS System for Module-Level Fiber Quality Mapping: System Improvement and Field Testing

Yufeng Ge, J. Alex Thomasson, Ruixiu Sui, and John D. Wanjura. Department of Biological and Agricultural Engineering, Texas A&M University, 201 Scoates Hall, College Station, TX 77843

A wireless GPS system for module-level fiber quality mapping has been developed at Texas A&M University. In its complete form, it includes subsystems for harvesters, boll buggies, and module-builders.  The system was field-tested on a producer’s farm near Plains, Texas in 2006. The field test identified the following problems: (1) limited wireless signal transmission range, (2) lack of a needed boll-buggy subsystem, and (3) software inefficiency. In 2007 improvements were made to tackle these problems: (1) placement of wireless antennas on top of the cabs of the harvester, boll-buggy tractor, and module builder via extension cables, (2) addition of a boll-buggy subsystem, and (3) redesign of software. A John Deere 9996 picker (equipped with a high-quality Starfire GPS system) was available for the harvest subsystem installation, so a harness cable was purchased and used to enable the Starfire system to supply GPS signals to both the harvester subsystem and the yield monitor. The 2007 field test showed that the system can run automatically to track a basket of cotton from the picker to the module builder, except that sending wireless signals is currently manually triggered on the occasion of a basket dump. The wireless transmission range is now greatly enhanced, capable of covering the entire test field (around 200 ac.). Because of the sharing of GPS signals, the basket and module boundaries can be related to the yield map produced from the yield monitor. Therefore, yield data can be extracted according to module number and post-calibrated at high resolution with known module weights.