Gretchen F. Sassenrath and J. Ray Williford. USDA-ARS APTRU, P.O. Box 36, Stoneville, MS 38776
Various methods of estimating crop water status are available. Most commonly used methods are suitable for small-scale laboratory studies, but are not well-suited for the large scale monitoring needed for production research. To avoid yield-limiting water stress, we need to have an accurate, easy to use method of measuring plant water potential. Direct measures of leaf water potential, such as the Scholander pressure bomb and the dew point hydrometer, are time consuming, limiting the number of samples that can be accurately read in a short period of time. Remotely sensed methods such as canopy temperature and reflectance measurements are sensitive to environmental conditions (temperature and sunlight) during the measurement period, and are not well correlated to physiological changes in leaves. Moreover, remotely sensed methods are susceptible to interference from ancillary factors that contribute to the overall measurements, particularly from the soil. In this study, we determined leaf water status in field-grown cotton plants from two production systems, conservation and conventional, for irrigated and rain fed cotton. Preliminary results show the pressure bomb to give the most consistent readings across replications, while remote sensing methods were the easiest to obtain.
See more of Cotton Physiology Conference Posters
See more of Cotton Physiology Conference
See more of The Beltwide Cotton Conferences, January 3-6 2006